4050.11 – Angles in a Special Triangle


It so happens that the triangle whose sides are 4, 5, and 6 has a special property: its largest angle is twice its smallest angle. Make calculations that support this assertion.


Solution

Let A\angle A be the largest angle; C\angle C the smallest.

First Solution. We can use the law of cosines—twice.

\begin{aligned}

6^2 &=& 4^2 + 5^2 - 2 \cdot 4 \cdot 5 \cos A, \

\cos A &=& \frac{6^2 - 4^2 - 5^2}{-2 \cdot 4 \cdot 5} = 0.125, \

\angle A &=& \arccos(0.125) \approx 82.82°. \

&& \

4^2 &=& 5^2 + 6^2 - 2 \cdot 5 \cdot 6 \cos C, \

\cos C &=& \frac{4^2 - 5^2 - 6^2}{-2 \cdot 5 \cdot 6} = 0.75, \

\angle C &=& \arccos(0.75) \approx 41.41°.

\end{aligned}

Voila!

Second Solution. First we find the area, A\mathcal{A}, via Heron's formula. Let ss be the semi-perimeter of the triangle, i.e., s=15/2s = 15/2. Then,

\begin{aligned}

\mathcal{A} &=& \sqrt{s (s - a)(s - b)(s - c)}, \

&=& \sqrt{\frac{15}{2} \cdot \frac{3}{2} \cdot \frac{5}{2} \cdot \frac{7}{2}} = \frac{15 \sqrt{7}}{4}.

\end{aligned}

Now we can find the height, hh, as in figure below. Since

157/4=A=bh/2=5h/2,15 \sqrt 7 / 4 = \mathcal{A} = bh/2 = 5h/2,

it follows that h=37/2.h = 3 \sqrt 7 / 2. Now,

\begin{aligned}

\sin A &=& h/4 = 3 \sqrt 7 / 8, \

\angle A &\approx& 82.82° . \

&& \

\sin C &=& h/6 = 3 \sqrt 7 / 12, \

\angle C &\approx& 41.41°.

\end{aligned}

Hey! These solutions are a good advertisement for the law of cosines, don't you agree?

4050_11_solution_b3f82f7b6c.png