4050.12 – Area External to Two Circles


A circle of radius rr is externally tangent to a circle of radius 2r2r, as in the figure. Segments AD and AE are drawn tangent to the circle with center at B. Find the area of the shaded region.

4050_12_9600f13564.png


Solution

Let A\mathcal{A} be the shaded area. Then

A=2(ΔADBIII).\mathcal{A} = 2(\Delta ADB - \text{I} - \text{II}).

For the area of ΔADB\Delta ADB, we need the length ADAD:

AD=(3r)2(2r)2=r5, AD = \sqrt{(3r)^2 - (2r)^2} = r\sqrt{5},

ΔADB=r5(2r)2=r25.\Delta ADB = \frac{r\sqrt{5} \cdot (2r)}{2} = r^2\sqrt{5}.

For the area of sectors I\text{I} and II\text{II} we need the angle Θ\Theta:

Θ=arcsin(2r3r)=arcsin(23),\Theta = \arcsin{(\frac{2r}{3r})} = \arcsin{(\frac{2}{3})},

I=Θ360πr2,II=90Θ360π(2r)2.I = \frac{\Theta}{360} \pi r^2, II = \frac{90-\Theta}{360} \pi (2r)^2.

Putting this all together:

A=r2(25+π(arcsin(23)360+90arcsin(23)90)).\mathcal{A} = r^2 \left( 2 \sqrt{5} + \pi \left(\frac{\arcsin{(\frac{2}{3})}}{360} + \frac{90 - \arcsin{(\frac{2}{3})}}{90}\right) \right).

4050_12_solution_c28c6f6917.png