4100.22 – Cosine of Three


Given that cos30=3/2\cos 30 = \sqrt{3}/2 and that cos36=(1+5)/4\cos 36 = (1 + \sqrt{5})/4, find (using formulas for the cosines of the sums and differences of angles) an exact expression for cos3\cos 3. Your expression may use radicals as they are exact.


Solution

We will need sin30\sin 30 and sin36\sin 36 as well as the given cosines. These follow from the Pythagorean formula: (cosθ)2+(sinθ)2=1(\cos \theta)^2 + (\sin \theta)^2 = 1. Using this we find that

sin30=1(cos30)2=134=12sin36=1(cos36)2=11+5+2516=1662516=10254. \begin{aligned} \sin 30 &=& \sqrt{1 - (\cos 30)^2} = \sqrt{1 - \frac{3}{4}} = \frac{1}{2} \\ \sin 36 &=& \sqrt{1 - (\cos 36)^2} = \sqrt{1 - \frac{1 + 5 + 2 \sqrt{5}}{16}} \\ &=& \sqrt{\frac{16 - 6 - 2 \sqrt{5}}{16}} = \frac{\sqrt{10 - 2 \sqrt{5}}}{4}. \end{aligned}

After some thought and a bit of scratch work, we find that

cos3=cos62=cos(36302)cos(3630)=cos36cos30sin36sin30=1+54321025412=3+5+10258cos3=cos(62)=1+cos62=8+3+15+102516=8+3+15+10254 \begin{aligned} \cos 3 &=& \cos \frac{6}{2} = \cos \left( \frac{36 - 30}{2} \right) \\ \cos (36 - 30) &=& \cos 36 \cos 30 - \sin 36 \sin 30 \\ &=& \frac{1+\sqrt{5}}{4} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{10 - 2 \sqrt{5}}}{4} \cdot \frac{1}{2} \\ &=& \frac{\sqrt{3} + \sqrt{5} + \sqrt{10 - 2 \sqrt{5}}}{8} \\ \cos 3 &=& \cos \left( \frac{6}{2} \right) = \sqrt{ \frac{1 + \cos{6}}{2}} \\ &=& \sqrt{ \frac{8 + \sqrt{3} + \sqrt{15} + \sqrt{10 - 2 \sqrt{5}}}{16}} \\ &=& \frac{ \sqrt{8 + \sqrt{3} + \sqrt{15} + \sqrt{10 - 2 \sqrt{5}}}}{4} \end{aligned}

Wow. Complicated!