Answer: tan5x !
Use the addition formulae:
sin(a+b)sin(a−b)==sinacosb+sinbcosa,sinacosb−sinbcosa.
Adding these gives
sin(a−b)+sin(a+b)=2sin(a)cos(b).
Similar identities for cosine yield,
cos(a−b)+cos(a+b)=2cos(a)cos(b).
These lead to
sin2x+sin8xsin4x+sin6x==2sin5xcos3x,2sin5xcosx,
where the first uses a=5 and b=3 and the second uses a=5 and b=1.
Similarly,
cos2x+cos8xcos4x+cos6x==2cos5xcos3x,2cos5xcosx.
Combining all of these results,
cos2x+cos4x+cos6x+cos8xsin2x+sin4x+sin6x+sin8x===2cos5xcos3x+2cos5xcosx2sin5xcos3x+2sin5xcosxcos5xsin5x⋅2cos3x+2cosx2cos3x+2cosxtan5x
(with thanks to Alexandra Du).